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Abstract--This theoretical investigation determines the hydrodynamic field interior and exterior to an 
oscillating viscous drop for the case in which the hydrodynamic field exists strictly as a result of forcing 
by a modulated acoustic standing wave field. Perturbation of the governing equations of fluid motion 
generates a hierarchy of systems of equations. At second order, this system represents the hydrodynamic 
field which is forced by terms quadratic in acoustic field quantities. Viscous effects are incorporated into 
the acoustic field. Of particular interest is the nature of the hydrodynamic field in a sublayer region which 
exists near the drop-host interface. The boundary conditions, which are imposed at the drop-host fluid 
interface and which include the radial and tangential forcing due to the acoustic radiation pressure vector, 
complete the problem formulation. 
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1. I N T R O D U C T I O N  

This work investigates the flow field of  an oscillating liquid drop which is surrounded by a viscous 
host medium for the particular case in which the drop oscillations occur strictly as a result of  
acoustic forcing. This problem arises naturally in the context of  acoustic levitation systems which 
have been utilized not only in ground-based experiments, but also in investigations done in the 
microgravity environment present in the space shuttle. 

The development of  acoustic levitation systems has provided a technology which can be utilized 
for fundamental liquid droplet studies. For example, drop oscillations as well as applications to 
emulsification and splitting of  drops have been studied by Marston (1980). Acoustic levitation 
devices utilize radiation pressure forces to position the fluid sample (drop) away from container 
walls. For  the case of  the three-axes system discussed in Wang et al. (1984), acoustic drivers 
(speakers) centered in three orthogonal sides of  a parallelepiped chamber are driven at its resonant 
frequency. A standing wave pattern is then set up, and liquid drops can be positioned in the region 
in which the pressure is a minimum, i.e. the wave pressure nodes. The drop oscillations can then 
be induced via frequency modulation of  an acoustic wave. 

The quadrupole resonance of a simple drop has been investigated experimentally by Marston 
& Apfel (1980). Drop size was on the order of  millimeters. Modulated acoustic radiation pressure 
provided the driving force. Small amplitude oscillations and decay of a free (non-driven) drop were 
studied experimentally by Trinh et al. (1982). Furthermore, large-amplitude drop shape oscillations 
have been investigated experimentally for both the free and forced cases by Trinh & Wang (1982). 
Drop  oscillations and break-up were studied in a visualization experiment by Marston & Goosby 
(1985). The aforementioned experiments were all performed on Earth in a 1 g field. The drop itself 
was surrounded by an immiscible host fluid, with positioning in the chamber accomplished via 
acoustic radiation forces. It was deduced from experiments that the effects from tangential acoustic 
radiation pressure forcing appeared less significant than those due to forcing in the radial direction. 

A theoretical analysis of  the hydrodynamic flow field resulting from acoustic forcing, both within 
the drop and the host fluids, accompanied early experimental work by Marston (1980). In the 
analysis, the acoustic field was assumed a priori  to be irrotational. With this assumption, any 
tangential radiation pressure forcing at the interface separating the drop and the host fluid is set 
identically to zero. Such forcing normally would enter the analysis through the boundary 
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conditions. More significantly, the assumption of irrotationality of the acoustic field precludes any 
forcing of the Navier-Stokes equation (which governs the hydrodynamic field). Since the 
hydrodynamic field exists only as a result of the acoustic forcing, such source terms due to acoustic 
forces are expected. 

The present work does not make the restrictive assumption on the acoustic field. The goal of 
this theoretical effort is to determine the hydrodynamic field, both interior and exterior to the drop, 
as the result of acoustic forcing from first principles. In this work, a consistent perturbation 
expansion scheme in a small parameter generates a hierarchy of systems of equations. The lowest 
order set of equations governs the acoustic field, as shown by Lyell (1993). The next order 
represents the hydrodynamic problem; in it the acoustic field naturally couples into the governing 
equations. These equations, together with the associated boundary conditions, are solved. The 
results are compared with those found in the early simplified analysis of Marston (1980), and the 
significance of the tangential forcing is addressed. 

For  the reader who is interested in pursuing the literature in great detail, please note that there 
are a number of  misprints in the work of Marston (1980). These misprints, which do not interfere 
with the conceptual flow of  that work, have been corrected in a later paper by Marston et al. (1982). 
As a further point, please note that the determination of the hydrodynamic field in Marston (1980) 
was cast in terms of the radial components of the velocity and vorticity fields. In the current work, 
the presentation is more straightforward, with the formulation cast in terms of the pressure and 
velocity field components. Because of length, intermediate steps in equation development cannot 
be presented here. These steps are detailed in appendices I V, a copy of which may be obtained 
from the Editor. 

2. F O R M U L A T I O N  AND E Q U A T I O N  D E V E L O P M E N T  

The goal is to generate the equations governing the hydrodynamic field, with the forcing due 
to the viscous acoustic field arising and coupling in naturally. As the hydrodynamic field of the 
drop would not exist were it not for the acoustic field, it is to be expected that the hydrodynamic 
field will arise at higher order in the expansion scheme. It is therefore necessary to introduce 
elements of the acoustic field problem. These are kept to the minimum necessary for logical 
exposition of  the current work, since details on the nature of the viscous acoustic field have been 
presented by Lyell (1993). Emphasis is on elucidation of the connection between the hydrodynamic 
and acoustic fields. 

The acoustic field is modeled as a symmetric, modulated standing wave field, with the acoustic 
waves represented as plane waves. The walls of the levitator are taken to be far from the drop, 
and the drop is not influenced by them. The center of mass of the drop is stationary. Focus is on 
the induced drop oscillation; the acoustic wave used to position the drop is not taken into account 
in the analysis. For the terrestrial environment, the effect of this positioning wave in the 
deformation of  the drop will be negligible provided the drop radius is smaller than the square root 
of  the ratio of  interfacial surface tension to buoyancy force (for unit volume). This is taken to be 
the case. 

Both acoustic and hydrodynamic fields must satisfy the governing equations of fluid mechanics: 
continuity, the Navier-Stokes equations (only Newtonian fluids considered) and the conservation 
of  energy. The analysis is isothermal, which results in simplifications of the energy equation. 
Material properties such as viscosity are taken to be constant. In general, these values differ for 
drop and host fluids. The analysis is restricted to axisymmetric. 

Let the field variables be non-dimensionalized with respect to quantities which reflect scales in 
the acoustic field problem. Quantities which pertain to the host (drop) region are denoted by a 
superscript o(i). Dimensionless quantities are denoted by a tilde. 

(Co° /OAc) i  = x 

(~ i , ~ )~ '=  t ;  (#o°),~ = p 

(co°)n = u; p°(c°)~ = p  [1] 
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with c ° the speed of sound in the host medium and COAC the acoustic frequency. The density of  
the undisturbed host medium is used as the reference density. It is of crucial importance that the 
length scale of the hydrodynamic problem, denoted by d, be equal to that in the acoustic problem. 
If the field variables were to be non-dimensionalized by scales pertinent to the hydrodynamic field, 
then the non-dimensional quantities (indicated by a caret) would be given by 

dR = x; d = (Co°)/COAC 

CODl[= t; CODdO= U 

p°d2co~p = p [21 

with COD the natural frequency of oscillation of  an inviscid drop of  the same dimensions and having 
the same interracial tension at the drop-host  interface. A comparison of the non-dimensional 
quantities shows that 

f i=64;  /~=~2p [3] 

with & the ratio of the acoustic and hydrodynamic time scales, i.e. (COD/COAC) 
Utilizing scales relevant to the acoustic field, expand the non-dimensionalized variables in the 

host region in powers of  & as follows 

rio = 1 + c~fi~,c 

I]° = ~ V~,c + & 2fi~v [4] 

The subscripts AC and HY indicate the acoustic and hydrodynamic field quantities, respectively. 
Except for the replacement of " l "  in the density expansion by fl = p ~o/P o, the expansion of the field 
variables in the drop region is the same. 

The expansions are substituted into the governing equations. At order 6, this results in sets of 
equations (for host and drop regions) which the acoustic field must satisfy. The acoustic field has 
been determined; in particular, the viscous correction was determined via the method of composite 
expansions. At this stage, the acoustic field quantities are regarded as known. See Lyell (1993) (or 
appendix I for an outline). 

Before proceeding with the investigation of the hydrodynamic field, several remarks concerning 
the acoustic field are in order. It is frequency modulated, and can be viewed as the superposition 
of  two acoustic standing waves, the first of which has the frequency COAC- The second is of  frequency 
co". Moreover, (DAC : C O "  - -  O)D, with COD << (-DAC and o) D << o)". The drop frequency, much smaller than 
those of the acoustic waves, is akin to a beat frequency. The respective amplitudes of the acoustic 
waves are taken to be the same. 

The hydrodynamic field which occurs at second order in & is solenoidal. At this order, the time 
average of the equations over an acoustic period is taken. The resulting equations are time 
dependent, with the time dependence being of  the form cos(6t + ~/"-~/ ').  The term (~/"-~/ ')  
represents the phase. The temporal behavior in the hydrodynamic problem is not on the same scale 
as in the acoustic problem. It is convenient to define a new independent variable for time. Let 
T = &t, with T a slow time. Moreover, the dependent variables are to be re-expressed utilizing this 
hydrodynamic scale time, where appropriate. This results in the rescaling introduced in [3]. The 
resulting hydrodynamic equations are, in the host region, 

V" a~v = 0 

d a ~ v / d T  + VP~v - (1/ReHy)V2fl~¥ = -2( ( [~c)"  V([~,c)* + (~c)(i[~,c) + C C ) c o s ( T  + t l ' -  t 1 ') 

[5] 

The Reynolds number R e a v = d 2 c o o / V  ° is expressed in terms of quantities relevant in the 
hydrodynamic problem. It is noted that ReAc = ReHv/6 and ReHy is taken to be an order one 
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quantity. The overbar indicates the time independent part, and the asterisk and "CC"  indicate the 
complex conjugate. In the drop region, the hydrodynamic equations are 

V. fihv = 0 

fl Ofihv/OT + V/~hv - (~/ReHv)VZfihv 

= -2 ( f l  ([~,c) V([kc)* + (~ kc)(i[kc)* + CC)cos(T + r/" - r/') [6] 

i o i o The parameters a and fl are #o/Po and Po/Po, respectively. 
It is [5] and [6], together with the appropriate boundary-interface conditions, which must be 

solved in order to determine the hydrodynamic field. The forcing terms on the right-hand sides of 
the conservation of momentum equations in drop and host fluids involve acoustic field quantities, 
and are known functions. The temporal cosine term is replaced by one in exponential form. At 
this stage, the caret is dropped for convenience. 

It is noted that the time averaging process also yields a time independent set of equations; the 
solutions to which are termed the static solution. As it is the drop oscillation problem which is of 
primary interest, comments on the time independent problem are relegated to the discussion (and 
appendix III, from the Editor). 

3. H Y D R O D Y N A M I C  F I E L D  S O LU TIO N  

The acoustic field solutions act as forcing terms in [5] and [6]. A solution of the acoustic field 
quantities in the drop and host regions has been found by Lyell (1993). Brief details are reprised 
in appendix I (available from the Editor). The effects of viscosity were found to be important in 
regions of dimension ~ extending both inward and outward from the drop-host  interface. 
In this region, the spatial independent variable in the radial direction, r, was rescaled. In the host 
(drop) region, r = R + E~ (r = R - ~ ) .  The small parameter ~ equals ~ .  The viscosity 
modifies the acoustic solution only in the sublayer region; outside of it the acoustic field is strictly 
inviscid and irrotational. 

Suppress the temporal dependence and let 

i , o  VA ci,o _-- Vi,OAC~tr, 0) + VAC(~ (or ~), 0) [7] 

The first term on the right-hand side denotes the solution which exists outside the sublayer region 
in the drop (i) or host (o). It is inviscid and irrotational. The second term on the r.h.s, exists as 
a result of  viscous effects on the acoustic field, and decays to zero outside the sublayer regions in 
the drop and host fluids. 

If one manipulates the conservation of momentum equation for the hydrodynamic field (in drop 
and host regions) by taking the curl of [5] and [6], it will be found that there is no contribution 
from terms which have no ~ or ~ dependence. It is in the sublayer regions of the drop and host 
fluids that the hydrodynamic vorticity equations are forced by acoustic field quantities which act 
as sources of vorticity. 

With the structure of the acoustic field in mind, decompose the hydrodynamic field quantities 
as follows 

u~v(r, O) = (ilh°y (r, O)+ fi'~°v (~ (or ~), 0))e ~'~r+'~ge.'' 

ph°v(r, 0 = (~h°y(r, O) + ~h°y(~(or (), 0)) e "(r+'"sP,')) 

with r/asp, 1 the phase associated with the hydrodynamic field. The exponential time-dependent terms 
will be denoted by EXP. This decomposition is substituted into the conservation of mass and 
momentum equations [5] and [6]. 

The discussion which follows is done in terms of the host fluid region. As the development in 
the drop region proceeds in a similar manner, results are only presented in that region. It is noted 
that the two sub-regions are delineated, an inner region in which source terms for vorticity appear, 
and an outer region in which the hydrodynamic vorticity field is unforced. 
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Inner host f luid region 

In this region, recall that the independent variable r was stretched, with r = R + E(, and that 
¢ = x/(1/ReAc). Utilizing the relationship between ReAc and ReHy, E can be re-expressed as 
E - - x / ( 6 / R % y ) .  Recall that ReHv is an order one quantity. The quantities originating from the 
acoustic field which appear on the r.h.s, of  the conservation of momentum equation are written 
in terms of  the ( dependence. Then, uHv and PHY are expanded in terms of x / (6 /R%y) .  The same 
process is applied to the conservation of mass equation. To lowest order, the forcing of  the 
hydrodynamic field by acoustic field quantities is given by the equation 

(~(~l,HY)/0~ 2= (2ReHv) x (TERM1) x (TERM2) 

× ( - ( 1  - i)/21/2exp((-(1 - i)/(21/2))~) + CC) × e (i('f' ~" ,TRsP,O) [8] 

with 

TERM1 = ~_, (qt, B~L,t(dPr /dO))* 
l '  

and 

TERM2 = ~, ((a °rqr (h fir))'[ R "~- ANC qr (Jr' (r))'l R Pv) 
r' 

where the Pt are Legendre polynomials. Again, the hydrodynamic field of the host fluid region 
expanded in the inner variable, ~, is indicated by # .  Coefficients which appear in TERM1 and 
TERM2 are B ° o BLJ, as.t, qt and ANc. These occur in the solution of the acoustic field, and are known 
quantities in the hydrodynamic field problem. The subscript 1 on the e0 component of velocity in 
[8] indicates the contribution is at order V/~-/ReHv) in the expansion scheme. The solution is given 
by 

with 

and 

fi~,.nv = ~ (dP, /dO)(T1 + T2 + T3)exp(( - (1 + i)/2'/2)~)e i(¢' "-"~sP.O 
1 

TI = R e u y ( -  1)2'/z(1 + i)(C l~')exp(( - (1 - i)/(2)'/2)~) 

T2 = ReHy(-- 1)2'/2(1 -- i)(C21~')exp(( -- (1 + i)/(2)'/2)~) 

[9] 

and with 

T3 = da + d~(~) 

C2~' = ((2• + 1)/2l(l + 1)) L (C~)*(dPL/dO) (dPffdO)sin(O) dO 

and with 

The h~ and the j~ are spherical Hankel and Bessel functions. The constants d~ and d~ arise in the 
homogeneous solution to [8], while the remaining t, erms represent the particular solution due to 

~ o  forcing by the acoustic field variables. The u,,Hy and ~U terms in the sublayer region occur at higher 
orders in the expansion parameter, x/(b/ReHy). Further details can be found in appendix II 
(available from the Editor). The contribution to U_~y from the sublayer region is completed via 
multiplication of [9] by EXP. The condition that the velocity field contribution which arises due 
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to forcing by viscous acoustic terms decay at the edge of the sublayer, i.e. as ~ ~ oe, requires that 
d~ and d~ be zero. 

Outer host fluid region 
There are no sources of vorticity in this region. The solutions are found to be 

fir0Hv(r, 0) = ~ (a~r (J+2) + a~,r 'h~(sr))P+(cos(O)) 
l 

fi~,Hv(r, 0) = ~ (l(l + 1)) I(dP+/dO)(-la~r (1+21 
l 

+a]((l + l)r - 'h I (sr) - sh]+ ,(sr))) 

]~v(r, 0) = (ReH¥) 1 E (s2(l(l + I))-l)(--la°r ¢+ l))Pt(cos(0)) [10] 
/ 

with s 2 = ( - iReHv) .  The time dependent factor EXP in the above velocity and pressure fields has 
been suppressed. Note the form of the hydrodynamic solution in the outer region is the same as 
that in the problem of an unforced oscillating drop in an infinite fluid medium, as investigated 
previously by Miller & Scriven (1968). 

The hydrodynamic field solution of  the acoustically forced oscillating drop in the host region 
has been determined, and both inner and outer layer solutions exhibited. There remain unknown 
coefficients in the functional form of  the solutions. These are to be determined via application of 
the boundary-interface conditions at the drop-host  fluid interface. 

The development of the hydrodynamic field solutions in the drop involves an inner region 
solution, which occurs in a sublayer region of thickness ~ adjacent to the drop-host  
interface, and an outer region solution. The expansion of  the conservation of  mass and momentum 
equations in the sublayer region of the drop is performed in the stretched variable ~, with 
r = R -  e¢. The procedure is the same as that done for the host region flow field, so only the 
solutions in the drop region are presented. 

Inner drop region 

~U~o,,HV = ~ (dP,/dO)(T1 + T2 + T3)exp(( - (1 + i)(fl/2ot)~/2)~) e ~<~'-" ~RsP,,) [1 1] 
1 

with 

and 

and with 

and with 

T1 = Renv(2fl/e)l;2(1 + i) (C1)exp(( - (1 - i)/(fl/2cO'/2)~) 

T2 = Reuv(Zfl/e)'"z(1 - i)(C21)exp(( - (1 + i)/(fl/2ct)'/2)~) 

T3 = d~ + di,(~) 

Cll = ((2• + 1)/2l(l + 1)) CiL(dPL/dO) (dP,/dO)sin(O) dO 

C21 = ((2l + 1)/2l(l + 1)) (C~)*(dPL/dO) (dP,/dO)sin(O) dO 

>) 
The spherical Bessel function is Jr- Constants d~ and d~ represent the homogeneous solution 
contribution, while remaining terms represent the particular solution due to forcing by acoustic 
field variables. The fiir, H an~_~_~y  terms in the sublayer regior occur at higher orders in the 
expansion parameter, x/(6/ReHy). The contribution to uhv from the sublayer region is completed 
via multiplication of [11] by EXP. The condition that the velocity field contribution which arises 
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due to forcing by viscous acoustic terms decay at the edge of the sublayer, i.e. as ~ ~ - ~ ,  requires 
that d~ and d' I be identically zero. 

Outer drop region 

There are no sources of vorticity in this region. The solutions are found to be 

fiir,.y(r, 0) = ~ (alr (' i)+ a~r-ljt(Sr))Pt(cos(O)) 
l 

~,ny(r, 0) = ~ (1(l + 1))-l(dPt/dO ) ((l + 1)air 0-1) + a~3((l + 1)r - Ijt(Sr ) - Sit+ l(Sr))) 
I 

jbhy(r, 0) = (Re.y)  l ~  (S2(u/l)(a[r¢O)p,(cos(O))) [12] 
1 

with Sz=  ( - iRecyf l /~ ) .  The time dependent factor EXP in [12] has been suppressed. Note that 
the form of the hydrodynamic solution in the outer region of the drop is that of an unforced 
oscillating drop in an infinite medium, determined by Miller & Scriven (1986). 

The hydrodynamic field solution of the acoustically forced oscillating drop in both drop and host 
regions has been determined, and the inner and outer layer solutions in the respective regions 
exhibited. There remain unknown coefficients in the functional forms of the solutions for both the 
inner and outer layer solutions; these are (a~, a], a~, a~,). Other coefficients which occur in the inner 
layer solutions in both drop and host regions originate with the acoustic field problem, and are 
known quantities. The remaining coefficients are determined via an application of the 
boundary-interface conditions at the drop-host fluid interface. 

Application of the conditions at the drop-host fluid interface provides a set of forced 
simultaneous algebraic equations in the unknown coefficients. The solution of this set via numerical 
linear algebra techniques completes the hydrodynamic field problem. Physically, conditions are 
those of: (a) kinematic condition, (b) continuity of velocity across drop-host fluid interface, (c) 
tangential stress balance across interface and (d) normal stress balance across the interface, which 
includes the surface tension contribution. Forcing of the set of algebraic equations is due to the 
radiation pressure vector, which is the projection of the radiation stress tensor upon the drop 
surface. (For a brief discussion, see appendix IV, available from the Editor.) Thus, the acoustic 
field enters the hydrodynamic problem in two ways: (1) as a forcing of the hydrodynamic field 
conservation of momentum equation and (2) via the radiation surface pressure vector in both radial 
and tangential directions. 

The equilibrium interface is that of an oscillating drop, and can be described by 

Fe = r - R - ~ (xtPt(cos 0)EXP) = 0 [13] 
I 

where Pt are Legendre polynomials. It is clear that the interface lies in the sublayer region. The 
coefficient xt is another unknown. This results in five linear algebraic equations in five unknowns. 
(Since the analysis is axisymmetric, the continuity of velocity across the interface condition 
represents two equations, one in the ~r direction and the second in ~0.) 

The boundary-interface conditions are non-dimensionalized and expanded in terms of the 
parameter x / (6 /Re,y) .  To lowest order, for each mode l, the conditions are listed below, with 
explicit time dependence suppressed. The boundary conditions are applied on r = R, ~ = 0, ~ = 0. 
(See appendix V, available from the Editor, for details.) 

Continuity of  radial velocity 

Rtait +jt(SR)a~ - R - t - l a ~  _ h ~(sR )a~ = 0 [14] 

Continuity o f  tangential velocity 

- I R - ' - l a ~  + ((l + 1)h)(sR) - sRh~+ l(sR))a~ - (1 + 1)Rtaij -- ((l + I) j , (SR) -- SRjt+I (SR))a~ = 0 

[15] 
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Kinematic condition 

--ix;+ R ' 2a~ + R ~h](sR)a~=O [16] 

It  is noted that  the three above condit ions involve only velocity field contr ibut ions  which are 
solutions in the outer  regions (both of  the d rop  and host  fluids); because the s t reaming field (in 
the sublayer  regions) contr ibut ions  to the hydrodynamic  field occur  at next order  in the expansion 
parameter .  

Tangential stress balance 

~(l(l + 1))- ' ( (2(l  2 - l )R 2 _ S2)jt(gR) .q_ 2SR 'j,+,(SR))a~ + ~R' 2 ( 2 ( / -  1)/I)ai~ 

+ ~ (2ReHv) ( /~ /~ ) (CI I+  C2~)e ~¢'f' ¢ ,,sP,,)_ (2(l + 2)/(l + 1))R ;-3a~ 

- (l(1 + 1) 1((2(12 - 1)R -2 _ s2)h)(sR) + 2sR-'h)+ ,(sR))a~ 

-- (2 R e n y ) ( C l ?  + C2~)e i¢"" "' ,.sP,,/ 

= Re .~(2 l  + 1)(2l(l + 1))- '  (~)~ANG)(dP,/dO)sin(O) dO x e -~"Rs~,' [17] 

Note  tha t  ((pT)~ aN~) refers to the time averaged componen t  o f  the radiat ion pressure vector  in 
the e0 directions; with the t ime dependence factored out  o f  both  sides. The term e i("" ~' 'R~P.,) 
represents the phase  difference between the response of  the hydrodynamic  field and the imposed 
forcing. The  third and sixth terms on the left hand side are the result o f  velocity field contr ibut ions  
which arise in the sublayer  due to viscous acoustic source terms in the hydrodynamic  field 
equations.  

Normal stress balance 

-(~/ReHv)(S21 t R ; -  2(l - 1)R;-2)ai~ 

- (1/ReHv)(s2(l + 1) 'R ' ~ -- 2(l + 2 )R- ;  3)a~ 

+ (c~/ReHy) (2R -2)((1 -- I)j;(SR) - SRj;+~ (SR))a~ 

- ( 1 / R e H y ) ( Z R - 2 ) ( ( I  - 1)h)(sR) - sRh)+ ,(sR))a~ - (GR 2)(l + 2)(l - 1)xt 

) = ((2l + 1)/2) ((,prRAD'AL))P,(cos(O))sin 0 dO x e-i"RsP. ' [18] 

with (p--~kAD~AL) the t ime-averaged c o m p o n e n t  of  the radiat ion pressure vector  in the d~ direction; 
with time dependence factored out o f  both  sides. The factor  G o 3 2 = (a/pod o)D), with a denot ing the 
surface tension at the d r o p - h o s t  fluid interface. 

Clearly, radia t ion pressure vector  terms, which are due to the projections of  the radiat ion stress 
tensor upon  the d r o p - h o s t  interface, and which appear  as bounda ry  terms; contr ibute  to forcing 
in bo th  tangential  and radial directions. These contr ibut ions  appear  on the right hand sides of  [17] 
and [18], respectively. Addi t ional  terms which arise f rom the acoustic field appear  only in the 
tangential  stress balance equation.  Tha t  is, the hydrodynamic  field contr ibut ion f rom the sublayer 
region appears  only in the tangential  stress balance equat ion,  via the third and sixth terms on the 
lef t-hand side. This contr ibut ion would not exist if the acoustic field had been taken as i r rotat ional  
and inviscid. No te  that  these terms do not involve any unknown quantities. Calculat ion of  the 
integral in [17] yields 

2((2I(l + 1))/(2l + 1))(/~(Cll + c21) - CI~' - c2~') x e ~(~'- ¢~ 

Use o f  this expression in [17] results in a balance of  the contr ibut ions  due to the acoustic source 
terms in the hydrodynamic  field. Tha t  is, a l though there remains the contr ibut ion to the 
hydrodynamic  field f rom the acoustic sources in the velocity field itself, this contr ibut ion cancels 
the cont r ibut ion  due to the tangential  componen t  of  the radiat ion pressure vector  in the boundary  
condit ions.  Thus,  no bounda ry  terms involving tangential  radiat ion pressure ult imately contribute.  

Therefore ,  the remaining non -homogeneous  term in the system of  algebraic equat ions is due to 
the radial c o m p o n e n t  of  the radiat ion pressure vector. The linear system of  unknowns  
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a i a i a~,a4, l, 3, o xt) can be solved by use of  numerical linear algebra techniques. (See appendix VI, 
available from the Editor, for details.) 

4. DISCU S S IO N  

Numerous non-dimensional parameters appear in the hydrodynamic field problem. To place the 
results in the context of  physical scales, it is useful to consider the range of physical parameter 
values, which are taken from Marston (1980), Marston & Apfel (1980) and Marston & Goosby 
(1985). Typical values of  c ° and ~OAC are 105 cm/s and (2n)200 kHz, respectively. For  values of  Vo ° 
ranging from 0.01 to 10.0 cm2/s, corresponding values of ReAc range from 10 6 to  10 3. Values of 
E are equal to the inverse of the square root of ReAc, and are clearly small. For  nominal values 
of  density and surface tension, for the l = 2 mode of oscillation, COD values range from roughly 
17 kHz for a 0.1 mm radius drop to 47 Hz for a 0.5 mm radius drop. Corresponding values of 6 
range from 0.01 to 0.00004. Taking Renv as order one, the streaming flow in the hydrodynamic 
field which is induced by the acoustic field quantities extends over a distance of 0.0003~).002 cm, 
measured from the drop-host  interface. 

Although the experiments which have been done have not had Reuv at order one, a qualitative 
finding of  the experiments was that the tangential radiation pressure vector term is not significant. 
(The Reynolds numbers in the experiments were generally larger than that of the present analytical 
study.) The analytical results of this work exhibit a mechanism for why this can be the case in spite 
of  what would be one's physical intuition to the contrary, since it is clear that acoustic sources of  
vorticity do contribute to the tangential radiation pressure vector. 

It is noted that if the fluids involved in the analysis were to be taken to be very, very viscous, 
to the extent that the parameter Reny  were  to become quite small, the (E, f,  ReHy) balance would 
no longer hold, and the analysis in general would not apply. 

Finally, a discussion of  this work in the context of flows generated by a solid body in translational 
motion in an unbounded viscous fluid is in order. This situation is in contrast to the present case, 
in which the fluid drop is undergoing shape oscillations (no translational motion). Also, an interface 
between the drop-host  fluids is present, rather than the surface of  a solid body. The work of  Riley 
(1967) reprised and extended much of  the solid body effort, and will be used as a basis for 
comparison. 

The parameters R, Rs, E and M occur in Riley (1967), and will be denoted herein with an r 
subscript. The Reynolds number Rr = ErMr 2 may be considered a conventional Reynolds number. 
The parameters Er and Mr can be viewed as the ratio of the oscillation amplitude to a typical (solid 
body) length scale and as the ratio of  the typical length scale to a viscous length scale, respectively. 
However, M~ = ~rd~/vr, which also can be viewed as a Reynolds number in which the motion is 
oscillatory. A streaming Reynolds number Rsr 2 2 = erMr is defined, also. 

Since the work of Riley (1967) was time independent, the comparison made herein applies to 
the static streaming field, which is discussed in appendix III (available from the Editor). Formally, 
er corresponds to 6 and M E to Regc. However, 6 is the ratio of time scales in the present problem. 
Define the parameter Rs = c52Regc = 6 ReHy. In the present investigation, f << 1 and ReHy is order 
one. Therefore, Rs<< 1. Clearly, ReAc>> 1 in the present study. For the case of M~>> 1, Rsr<< 1, and 
R r at order one, Riley (1967) finds the flow outside of a shear layer to be Stokes-like. Continuing 
the formal comparison, this case would correspond to ReAc >> 1, Re.y order one, and Rs << 1, which 
is precisely the case in this investigation. Moreover, the flow obtained in the time-independent case 
(appendix III, from the Editor) outside the shear layer is Stokes flow. 

5. C O N C L U S I O N S  

The hydrodynamic field which exists as a result of droplet forcing by frequency modulated 
acoustic waves has been investigated analytically. A formal expansion procedure has produced a 
hierarchy of  equations in the order parameter 6, which physically represents the ratio of acoustic 
and hydrodynamic time scales. At lowest order in 6, this yields equations governing the acoustic 
field. At next order, those governing the hydrodynamic field are obtained. Through the expansion 
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procedure, the hydrodynamic field is related to the acoustic field from which it is generated in a 
rational manner. 

The hydrodynamic field was found to oscillate on a time scale slower than that of the acoustic 
time scale, with the hydrodynamic time scale corresponding to the inverse of the beat frequency 
for the modulated acoustic field. The hydrodynamic field was solved in the frame of this new time 
scale. 

The solution of  the hydrodynamic problem revealed a structure in both the drop and host fluids, 
with an inner region in both fluids existing near the interface in which a streaming velocity field 
due to acoustic forcing occurs. Any investigations of processes which occur near the interface of 
the oscillating drop would have to be cognizant of  this. 

The boundary-interface forcing in the tangential stress balance which arose as a result of the 
radiation pressure was canceled by contributions arising from the velocity streaming terms. Thus, 
radiation pressure forcing which actually appears in the boundary-interface conditions is only that 
of  the radial component. 

Finally, the relationship of this work to flows obtained in previous work involving the periodic 
translational motion of a solid body in an unbounded viscous fluid has been elucidated. 
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